Tips & Tricks for Trigonometry

Trigonometric Equations:

Haye to some trigonometric equations:

Type 1 Use of factorizations

Eg ($d\sin x - \cos x$)($1+\cos x$) = $\sin^2 x$ $\Rightarrow (d\sin x - \cos x) (1+\cos x) - (1+\cos x)(1-\cos x) = 0$

Types Reduce the trigonometric equations into quadratic equations.

Eg $2\cos^2 n + 4\cos n = 3\sin^2 x$ $\cos n = x$

Type3 Use of Sum or difference of trigonometric vatios (Convert them into product)

Sinc + SinD CAC + CASD

Type4. Convert product of trigonometric ratios into the sum or difference of their angles.

2 SinA Cos B = Sin(A+B) + Sin(A-B)

Type 5. A sinx + b Cosx = C

dividing by $\sqrt{a^2+b^2}$ on both sides $(\sqrt{\frac{a}{a^2+b^2}}, \sin x + \sqrt{\frac{b}{a^2+b^2}}, \cos x = \frac{c}{\sqrt{a^2+b^2}} \Rightarrow \frac{\text{Eq. becomes}}{\text{Sinx Cosx} + \text{Cosx Sinx}} = \frac{c}{\sqrt{a^2+b^2}}$ Cosx Sinx \Rightarrow Sin $(x+x) = \frac{c}{\sqrt{a^2+b^2}}$

Another way
$$Sinx = \frac{2 t an x/2}{1 + t an x/2}$$
 $Cosx = \frac{1 - t an^2 x/2}{1 + t an^2 x/2}$ Quadratic in $tan x$.

Eg Sin
$$\left(\frac{50}{4}\right)$$
 + Cos $\left(0\right)$ = 2
Here Sin $\left(\frac{50}{4}\right)$ ∈ $\left[-1, 1\right]$, Also Cos $\left(0\right)$ ∈ $\left[-1, 1\right]$. So,

Man value of L.H.S. = 2 = RHS. This is possible only when $Sin(\frac{50}{4})=1$ as well as Cos(0)=1

Type? $P(\sin x \pm \cos x, \sin x \cos x) = 0$; can be solved polynomial using $\sin x \pm \cos x = 1$

Fig.
$$Sinx + Cosn = 1 + Sinx Cosn$$

Assume $Sinn + Cosn = 1$
 $Sg. (Sinn + Cosn)^2 = 1^2$
 $\Rightarrow 1 + 2Sinx Cosn = 1^2$
 $\Rightarrow Sinx Cosn = 1^2$

· While solving trigonometric equations, we must be careful against the danger of loosing roots while we cancel a common factor.

Whenever we cancel a common factor, make a separate case when that common factor can be equal to zero.

· Avoid Squaring (if possible) because there is a danger of additional roots.

For Eg Sino + coso = 1
$$\longrightarrow$$
 (Sino + coso)² = 1
Sq 1+ Sin20=1 \longrightarrow 2 get back
Sin0+coso=1 or Sino+coso=-1

If squaring, make sure to satisfy the solutions you get by substituting back in the original equation. This is will omit extra solutions.

- Whenever Equation involves tank or Secol, always take loss \$70. Similarly if equation involves coth or cosecol take sinx \$0.
- Take care of domain always. Eg ly($f(\theta)$) \Rightarrow $f(\theta) > 0$ $f(\theta) > 0$
- $\sqrt{f(0)} \rightarrow \text{always positive}$ $\sqrt{\sin^2 0} = |\sin 0| \text{ not } f \sin 0$
- · General advise -> always crosscheck the solutions we have got.
- # If tanA + tanB + tanC = 0 $\Rightarrow A + B + C = n\pi$ (general soln)
- * If Landtanb+ Landtanc + Lanctand = 0

=> A+B+C = \frac{1}{2} (\frac{1}{2}n+1)\frac{17}{2} (general soi)

· Take care of denominator never becoming zero.